
   

 

 

 

 
THE PREDICTIVE CONTENT OF CO-MOVEMENT IN  

NON-ENERGY COMMODITY PRICE CHANGES 
 

 

 

 

 

 

 

 
 

PILAR PONCELA 
 EVA SENRA 

LYA PAOLA SIERRA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FUNDACIÓN DE LAS CAJAS DE AHORROS 
DOCUMENTO DE TRABAJO 

Nº 747/2014 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 

 
 
 
 
 
 
 
 
 
 
 

De conformidad con la base quinta de la convocatoria del Programa 

de Estímulo a la Investigación, este trabajo ha sido sometido a eva-

luación externa anónima de especialistas cualificados a fin de con-

trastar su nivel técnico. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN: 1988-8767 
 
 
 
 
 
La serie DOCUMENTOS DE TRABAJO incluye avances y resultados de investigaciones dentro de los pro-

gramas de la Fundación de las Cajas de Ahorros.  

Las opiniones son responsabilidad de los autores. 



1 
 

The predictive content of co-movement in non-energy commodity price changes 

Pilar Poncela* 
 Eva Senra**  

Lya Paola Sierra*** 

 

ABSTRACT 

The predictive content of the co-movement either of a large range of commodities, or 

the co-movement within a specific category of raw material prices is evaluated.  This 

paper reports success in using small scale factor models in forecasting the nominal 

price of non-energy commodity changes on a monthly basis.  Therefore, communalities 

of commodities in the same category, estimated by the Kalman filter, can be useful for 

forecasting purposes.  Notably, category communalities in oils and protein meals, as 

well as metals seem to substantially improve the forecasting performance of the 

random walk model.  In contrast, co-movement in extensive data of commodity prices, 

estimated through Principal Components, has poor predictive power over non-energy 

commodity prices, compared to the small-scale factors. 
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1. Introduction  

In a recent study Poncela, Senra and Sierra (2013) found that there has been an 

increase in co-movement in a large range of non-energy commodity prices since 2004, 

perhaps enhanced by the financialization in the commodity markets1.  Thus, prices 

which should apparently not be correlated, increased their common evolution in time. 

According to this study, the variance of commodity prices explained by the common 

behavior of 44 non-energy commodity prices, jumped from 9% between February 1992 

and November 2003, to 23% between December 2003 and December 2012. This 

means that after 2004 the common behavior of non-energy commodity prices accounts 

for a larger share of those fluctuations. It is therefore of interest to explore whether co-

movement in prices of raw materials has some predictive power over each non energy 

commodity price. 

To analyze the consequences of this stylized fact in forecasting, we compare several 

models against a baseline random walk alternative. We aim to explore the predictability 

of 44 non-fuel commodity spot prices measured on a monthly basis. For this purpose, 

we use a Dynamic Factor Model (DFM) to extract a latent factor that drives the co-

movement on non-energy commodity prices. We evaluate two variants: a large-scale 

DFM that uses the whole commodity price data and estimate their co-movement 

through Principal Components and a small-scale DFM that takes into account the 

communalities into commodities of the same category and estimate factors by means 

of the Kalman filter.  Our measure of forecasting performance is the out-of-sample root 

mean square error of prediction (RMSE) for one-step-ahead forecasts.  

Although the literature on commodity price forecasts is extensive, it provides only scant 

empirical evidence of the role of co-movement in commodity prices as a possible 

source of predictability in non-energy spot prices.  The recent literature has focused on 

evaluating whether macroeconomic and financial variables have some predictive power 

over commodity price spot indices, with mixed results.  Chen, Rogoff and Rossi (2010) 

found that exchange rate fluctuations in a group of commodity-dependent countries 

have robust power in forecasting commodity price indices2. Groen and Pesenti (2011) 

used a large set of macroeconomic variables, apart from exchange rates, to evaluate 

                                                            
1 Financialization in the commodity market is the name given to the substantial increase in commodity index fund 
investments starting in 2004. According to authors such as Büyüksahin and Robe (2012) and Henderson, Pearson 
and Wang (2012) financialization not only increases comovements among different types of commodities, but 
generates cross-market linkages, especially with the stock market. Other contributors to this literature include Tang 
and Xiong (2012) and Irwin, Sanders and Merrin (2009). 
2 Chen, Rogoff and Rossi (2010) examined how individual exchange rates of Australia, Canada, New Zealand, South 
Africa and Chile forecast the corresponding commodity price index for the country. 
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their predictive power over commodity indices.  They did not find a robust validation of 

Chen et. al (2010)´s previous conclusions.  Moreover, although the inclusion of 

multivariate macroeconomic variables improves the forecasts, it does not produce an 

overwhelming advantage of spot price predictability when compared with the random 

walk model.  Gargano and Timmermann (2014) found that the predictability power of 

macroeconomic and financial variables depends on the state of the economy. 

Another branch of the literature has focused on whether futures prices are good 

predictors of future spot prices. Chinn y Coibion (2013) evaluate the forecasts of a 

range of commodity prices finding that futures prices for precious and base metals 

display very limited predictive content for future price changes.  In contrast, futures 

prices for energy and agricultural commodities do relatively better in terms of predicting 

subsequent price changes.  In regard to oil prices, Alquist and Kilian (2010) use two 

models: one that considers the current level of futures prices as the predictor and the 

second which is based on the futures spread, to conclude that oil futures prices fail to 

improve on the accuracy of simple no-change forecasts3. 

 Our paper considers the following research questions: First, does co-movement in 

non-energy commodity prices has predictive power over non-energy commodity 

prices? Second, has co-movement in commodity prices by category added power to 

the prediction in comparison with the large scale co-movement in commodity prices? 

Third, does the predictability of commodity prices vary across different types of 

categories, such as agricultural versus raw industrial commodities? We aim to answer 

these questions using dynamic factor models.   

The paper is organized as follows.  In section 2 we present the different models we 

estimate.  In section 3 we describe the data and the methodological procedure we 

propose. In section 4 we report the estimation and forecasting results. Finally, in 

section 5 we conclude. 

 

2. Model specifications 

The first three models are limited to the information embedded in each commodity price 

time series itself: the first is a random walk model, used as benchmark, the second is a 

univariate autoregressive (AR) model over the first differences of log prices, and the 

                                                            
3 Alquist and Kilian (2010) defined the oil futures spread as the percent deviation of the oil futures price from the 
spot price of oil. 
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third is a univariate ARMA model that takes into account the presence of possibly 

several types of outliers. 

Let ܲ,௧ be the spot price of the i-th commodity at time t, i=1,…n and ݐ ൌ 1,… . . , ܶ. Then 

),௧= lnݕ ܲ,௧)-ln( ܲ,௧ିଵ) denotes its related non-energy commodity price inflation. Then, 

the unconditional mean benchmark model is: 

,௧ݕ ൌ ߙ  ߳,௧,       (1) 

which implies that the best forecast of the spot price of commodities is simply the 

current spot price plus the drift ߙ if it were different from zero. 

The AR() model for the i-th commodity, i=1,….,n follows the specification: 

,௧ݕ ൌ ߙ  ,௧ିଵݕ,ଵߚ  ⋯ ,௧ିݕ,ߚ  ߳,௧, ݐ ൌ 1,… , ܶ. (2)    

Additionally, we include a univariate ARMA model which takes into account outliers 

estimated automatically, using Gómez and Maravall (1996)´s TRAMO program (Time 

series Regression with ARIMA noise, Missing values and Outliers), which follows the 

specification: ݕ,௧ ൌ
ఏሺሻ

థሺሻ
௧ߝ   ሻ are Autoregresive andܤሺߠ ሻ andܤwhere ߶ሺ ,ݏݎ݈݁݅ݐݑ

Moving Average polynomials of order  and ݍ respectively on the backshift operator 

 .4	ܤ

The subsequent models include a latent variable, or factor, that represents the 

common pattern of commodity prices. The general DFM specification assumes that the 

i-th commodity price inflation, labelled as ݕ௧, is driven by a latent component,	 ௧݂,which 

is common to all series plus an idiosyncratic component, ߝ,௧
5.  For instance, specifically 

for each ݅	we obtain: 

௧ݕ ൌ ߣ ௧݂  ݅ ݅∀  ,,௧ߝ ൌ 1,… ,ܰ   (3) 

where ߣ is the loading of the common factor into the ݅-th commodity.  The first DFM 

specification is a large-scale factor model that accounts for the common variability of all 

available non-energy commodity prices. We estimate the common factor by Principal 

Components as the large number of commodities used to evaluate the factor in the 

                                                            
4 TRAMO is available at the Bank of Spain webpage: 
http://www.bde.es/bde/es/secciones/servicios/Profesionales/Programas_estadi/Programas_estad_d9fa7f37
10fd821.html  
5 Although the DFM may have multiple factors, we have identified the factor structure using the 
information criteria proposed by Bai and Ng (2002), which confirm that there is one factor in the 
commodity price data.  
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large-scale DFM, allows us to assume consistency of this estimator6.  To forecast price 

inflation at t+1 with information until time t, we use factor based regressions of the 

form: 

,௧ାଵݕ ൌ ߚ ௧݂   ,௧ାଵ.       (4)ݑ

We also evaluate whether the inclusion of the forecast of the idiosyncratic component 

of the DFM,	ߝ,௧, improves the forecasting performance, or it is only the forecast of the 

common part what is valuable for forecasting7.  Then, the factor based regression 

related to the large-scale DFM that takes into account the idiosyncratic component 

follows the specification: 

,௧ାଵݕ ൌ ଵߚ ௧݂  ,௧ߝଶߚ   ,௧ାଵ.     (5)ݑ

Besides estimating a large-scale DFM, which takes into account a single common 

factor to all the commodity price series (equations 4-5), in this paper we also estimate a 

set of small-scale DFM models by introducing dynamic factors which are common only 

to the series within each set. More precisely, let us consider L commodity categories, 

and for each category (category l=1,2,…,L)  ݇  commodity price series.  Then, the 

baseline model for each commodity price in the ݈௧category can be decomposed into 

the following components:∀݈  

,௧ݕ ൌ ܽ
ܿ,௧  ,,௧ߝ

  ݈ ൌ 1,… ݇,    ∀݅			   (6) 

where within each category l, ܿ,௧ is the factor or co-movement variable common to all 

series in the category, ܽ
 represents the factor loading, and  ߝ,

 	named idiosyncratic 

component,  collects the dynamics specific to each commodity price inflation. Both the 

common factor and the idiosyncratic component may follow AR processes of order 

  ., respectively and	ݍ

ܿ,௧ ൌ ,ଵߴ
 ܿ,௧ିଵ  ⋯ ,ߴ

 ܿ,௧ି  ,௧ߟ
      (7) 

,௧ߝ
 ൌ ߶,ଵ

 ,௧ିଵߝ
  ⋯ ߶,

 ,௧ିߝ
  ߪ

ߟ,௧
 ,    (8) 

                                                            
6 For a discussion of dynamic factor models and its estimation methods see, for instance, Stock and 
Watson (2011). 
7 Currently, small-scale factor models also include the forecasting of the idiosyncratic component (see, 
for instance, Camacho and Perez-Quiros, 2010) while forecasting through large-scale factor models only 
uses the common factors embedded in a forecasting equation with lags of the target variable to reproduce 
specific dynamics (see, for instance, Stock and Watson, 2011). The advantage of including the forecast of 
the idiosyncratic component instead of the target variable lags could be that the idiosyncratic component 
is uncorrelated with the common factors. We aim to check the usefulness of the idiosyncratic component 
in factor forecasting. 
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where ߪ is the standard deviation of the idiosyncratic component, and ߟ,௧ ∼ ܰሺ0,1ሻ 

݅ ൌ ݈, … ݇, ݈ ൌ 1,… ,  ,are the innovations to the law motions for equations (7) and (3.8) ,ܮ

respectively. We also evaluate whether the inclusion of the forecast of the idiosyncratic 

component of the DFM improves the forecasting performance in the small-scale DFMs. 

We estimate the small-scale DFMs in the state-space using the Kalman filter. The 

smaller number of variables involved in the factor models by category impedes us from 

using the estimator of principal components in this latter case.  The Kalman filter also 

produces filtered inferences of the common factor that can be used in the prediction 

equation (9 and 10) to compute OLS forecasts of the variable ݕ,௧ାଵ
 .   

To sum up, the different models, and its variations, that we estimate and compare in 

terms of forecasting with the baseline random walk in this study can be summarized as: 

1. Autoregressive (AR) model. 

2. Univariate ARMA model with outliers. 

3.  Large-scale DFM 

3.1. Large-scale DFM with idiosyncratic component. 

3.2. Large-scale DFM without idiosyncratic component. 

4. Small-Scale DFM 

4.1. Small-Scale DFM with idiosyncratic component. 

4.2. Small-Scale DFM without idiosyncratic component. 

  

3. Data description and empirical strategy. 

We use 44 monthly non-fuel commodity price series from the International Monetary 

Fund database (IMF IFS). In accordance with the increase in the co-movement in non-

energy commodity prices found in Poncela, et al. (2013), we began our sample in 

January 2004 and finished in December 2013.  We include in our study the raw 

materials available in the following categories: cereals, meat and seafood, beverages, 

vegetable oil and protein meals, agricultural raw materials and metals. A summary of 

the commodities and their categories is shown in appendix 1. 

Figure 1 presents the non-energy commodity prices per category from January 1980 to 

December 2013. The starting date of our sample, January 2004, is marked with a 

vertical line in all plots.  Our sample is characterized by a great upsurge in several of 

the non-energy commodity prices until mid-2008, and a drastic decline during the 

global financial crisis. After mid-2009, prices began to recover the upswing in several of 
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the categories, being remarkable: agricultural raw material, cereals and metals.  

Notably, if we compare both the pre-2004 and post-2004 samples, there is an increase 

in the scale of the boom and bust cycles for industrial inputs such as agricultural raw 

material and metals, and edibles such as cereals, vegetable oils and protein meals. 

Figure 1:  Non-energy commodity prices per category (2005=100, in terms of U.S. 
dollars). 

 
Source: International Monetary Fund, IMF 
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Table 1 shows the descriptive statistics of the non-energy commodity price inflation for 

the period 2004:1-2013:12. Average inflation of non-energy commodities over the 

considered period are mostly positive, only three commodities have negative nominal 

average inflation (nickel, olive oil and lamb). The largest mean inflation correspond to 

metals such as copper and tin, with 0.99% and 1.10% per month, respectively.  The 

biggest values of volatility also coincide with the metal category: nickel, copper and 

lead reports the greatest volatilities.  Other commodities that exhibit large volatilities 

are: rubber, sunflower oil and swine (pork). Finally, as it can be seen in bottom of table 

1, the serial correlation term suggests first order autocorrelation is present in most of 

commodity prices, which justifies a first lagged term in equation (2).  

 

Table 1:  Summary statistics for non-energy commodity price inflation 

Agricultural 
raw 
materials 

Hard 
Logs 

Soft 
Logs 

Hard 
Sawnwood

Soft 
Sawnwood Cotton 

Wool, 
coarse 

Wool, 
fine Rubber Hides 

 Mean (%) 0,317 0,146 0,421 0,065 0,144 0,556 0,495 0,588 0,325 
 Std. Dev. 
(%) 3,370 6,352 2,247 5,823 6,898 6,002 5,954 8,970 7,498 
 Skewness 0,032 0,304 -0,404 0,364 -0,623 -0,168 0,244 -1,061 -2,689 
 Kurtosis 3,927 3,803 4,781 5,936 6,606 5,817 4,397 6,159 27,844 
AR(1) 0,332 0,362 0,133 0,330 0,401 0,345 0,333 0,267 0,199 

Veg. Oil 
and Prot. 
Meal Soybeans 

Soybean 
Meal 

Soybean 
Oil Palm oil Fishmeal

 
Sunflower 

Oil Olive Oil 
Ground-

nuts 
Rapeseed 

oil 

 Mean (%) 0,455 0,551 0,286 0,423 0,702 0,414 -0,166 0,739 0,377 
 Std. Dev. 
(%) 6,982 7,725 6,235 7,699 5,181 10,398 4,251 5,307 6,047 
 Skewness -0,710 -0,663 -0,561 -0,788 1,297 2,384 1,175 0,050 -0,265 
 Kurtosis 5,135 5,030 4,615 5,810 8,056 21,403 6,786 6,061 4,743 
AR(1) 0,334 0,316 0,361 0,433 0,297 0,417 0,261 0,288 0,235 

Metals Aluminum Copper Tin Zinc Nickel Lead Uranium 

 Mean (%) 0,061 0,989 1,103 0,587 -0,016 0,942 0,821 
 Std. Dev. 
(%) 5,823 8,112 7,508 7,847 9,864 9,204 7,233 
 Skewness -0,608 -0,892 -0,317 -0,483 -0,340 -0,762 -0,430 
 Kurtosis 4,222 6,941 3,185 4,096 3,968 4,048 5,732 
AR(1) 0,308 0,441 0,279 0,327 0,299 0,251 0,454 

Beverages 
Cocoa 
beans 

Coffee, 
Arabicas 

Coffee, 
Robusta Tea 

 Mean (%) 0,450 0,558 0,777 0,150 
 Std. Dev. 
(%) 5,784 6,143 5,817 7,641 
 Skewness -0,153 0,315 -0,051 0,071 
 Kurtosis 3,328 2,971 3,216 3,593 
AR(1) 0,204 0,113 0,217 0,123 
Cereals Rice Barley Maiz Wheat 

 Mean (%) 0,684 0,366 0,473 0,472 
 Std. Dev. 
(%) 6,899 7,165 7,086 7,268 
 Skewness 2,470 -0,364 -0,210 0,476 
 Kurtosis 16,131 5,316 4,559 5,027 
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AR(1) 0,521 0,295 0,226 0,225 

Meat 
seafood Beef Lamb 

Swine 
(pork) 

Poultry 
(chicken) 

Fish 
(salmon) Shrimp 

 Mean (%) 0,473 -0,268 0,399 0,344 0,775 0,371 
 Std. Dev. 
(%) 4,137 3,292 8,309 1,370 7,492 3,651 
 Skewness -0,113 -0,285 0,036 -0,040 -0,241 0,707 
 Kurtosis 8,249 4,009 3,223 2,978 3,477 9,059 
 AR(1) 0,176 0,473 0,069 0,749 0,252 0,373 

 

Once the different factor model alternatives have been exposed in the previous section, 

our procedure in analyzing the data is as follows: 

1. Following Stock and Watson (2011), we transform the data to achieve 

stationarity. In particular, we log differentiated and standardized commodity 

price data, prior to the factor extraction either by Principal Components or 

Kalman filter.     

2. We determine the number of factors of the large-scale DFM using information 

criteria proposed by Bai and Ng (2002).  For small factor models we analyze the 

eigenstructure of their variance-covariance matrix to determine the number of 

factors. 

3. We estimate the DFM through both principal components and the Kalman filter. 

4. We generate one-step-ahead forecasts.  We start our out-of-sample forecasts 

in 2010:12, re-estimate the models adding one data point at the time. In other 

words, we use an expanding window. The evaluation period is 2010:01– 

2013:12.  

5. We compute the RMSE for each model to assess its forecasting performance.  

6. We compare the RMSE of every model with that of the random walk. 

Regarding univariate models, we choose the AR(p) model by means of adjustment 

criteria, and for the ARMA model with outliers we use the TRAMO program and run it in 

an automatic mode.  Subsequently, we continue with steps 4 to 6 mentioned above. 

   

7. Empirical results 

In this section we evaluate the co-movement content for predicting inflation of non-

energy commodities. In particular, we examine whether joint movements of commodity 

prices can be used as predictors of the inflation of each non-energy commodity.  

Estimation results for univariate AR models show that an AR(1) is suitable for most 

commodities inflation.  Automatic modelling shows mostly the same specification, 
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except for a small number of series where it appears to be a minor stationary 

seasonality . As regards the factor models, we confirm the presence of only one factor, 

which we call co-movement, in both large-scale DFM and small-scale DFMs .   

Forecasting results for the univariate models as well as the DFMs are presented in 

table 2.  The table compares the forecasting results in terms of the ratio of the RMSE of 

every model over the RMSE of the random walk forecast.  Hence, a ratio less than one 

means that the model improves the benchmark forecast, while values above one 

suggest the opposite. We evaluate the statistical significance of the out-of-sample 

predictability results using the test statistics proposed by Diebold and Mariano (1995). 

The first and second columns of table 2 show the RMSE ratios of the univariate 

models: univariate with outliers and AR model, while the third and fourth columns show 

the RMSE ratios of the large-scale factor model without and with idiosyncratic 

components, respectively.  The results indicate that both univariate models usually 

outperform the random walk model in predicting non-energy commodity price inflation. 

In particular, for the AR model we found that 24 of these improvements were significant 

at the 10 percent level according to the test of Diebold and Mariano (1995), while the 

random walk model was found significantly better than AR only once. Since the ARMA 

model with outliers does not seem to outperform the AR model, for further analysis we 

will only consider the AR model as the univariate alternative (besides the random 

walk). In addition, for 38 commodities the large-scale DFM beats the random walk 

forecasts, although for only 16 of these the differences between both models are 

significant. We did not find any differences, in terms of number of commodities that 

outperform the random walk predictions, between large-scale factor model forecasts 

that take into account the idiosyncratic component of the factor analysis, and models 

that do not. 

With regard to the small-scale factor models the results are more encouraging.  

Columns 5 and 6 in table 2 report forecasting performance of these models relative to 

the naïve random walk model.  First and foremost, the small-scale factor models 

provide better predictions than the large-scale DFM approach and univariate models in 

most of the commodities within the categories beverages, vegetable oils and protein 

meals, as well as agricultural raw materials and metals, which means that co-

movements by commodity category added power to predictions. Predictability results of 

the small-scale factor models for cereals and meat and seafood are mixed. In order to 

better visualize which of the models has the best result in terms of predictability for 
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each commodity, we mark in bold type in table 2 the lower RMSE ratio for every non-

energy commodity price inflation. 

 

Table 2: Ratios of the RMSE of the univariate models and DFMs over the RMSE 
of the random walk model for the period of analysis 2004:1-2013:12. 

RMSPE Model/RMSPE 
random walk. 

Univariate
+ outliers 

(AR) 
model  

Large-
Scale 
DFM (1) 

Large-
Scale 
DFM (2) 

Small-
Scale 
DFM (1) 

Small-
Scale 
DFM  (2) 

Beverages   

Cocoa beans 0.790 0.825 0.856 0.858 0.673* 0.674* 
Coffee, Other Mild 
Arabicas, 0.695 0.820*** 0.832** 0.835** 0.630* 0.631* 

Coffee, Robusta 0.929 0.788** 0.787** 0.792** 0.746* 0.749* 

Tea 1.166** 0.891* 0.927 0.928 0.928 0.926 

Vegetable oils and protein meals   

Soybeans 0.890 0.810 0.846 0.849 0.561** 0.562** 

Soybean Meal 0.807 0.808 0.837 0.838 0.437*** 0.440*** 

Soybean Oil 0.838 0.800* 0.833** 0.843** 0.723* 0.724* 

Palm oil 0.840*** 0.807** 0.814* 0.820* 0.465*** 0.463*** 

Fishmeal 0.974* 0.842** 0.899 0.899 0.520** 0.517** 

 Sunflower Oil 0.992 0.806** 0.812 0.818 0.609* 0.606* 

Olive Oil 0.760 0.797 0.796 0.797 0.480** 0.482** 

Groundnuts (peanuts) 0.738 0.782 0.680** 0.680** 0.338*** 0.341*** 

Rapeseed oil, crude. 0.877*** 0.762* 0.787* 0.795* 0.792* 0.791* 

Metals   

Aluminum 0.798* 0.761*** 0.736** 0.740** 0.640 0.641** 

Copper 0.827 0.820* 0.856 0.865 0.749 0.750* 

Tin 0.827*** 0.787 0.795 0.800 0.456 0.457*** 

Zinc 0.894* 0.752*** 0.697*** 0.699*** 0.527 0.531*** 

Nickel 0.778*** 0.789 0.805* 0.818 0.514 0.513*** 

Lead 0.789*** 0.749*** 0.732** 0.737** 0.509 0.513*** 

Uranium 1.165 0.899 1.081 1.086 1.083 1.067 
Agricultural raw 
materials   

Hard Logs 1.065 0.932 1.046 1.046 1.470 1.470 

Soft Logs 0.530*** 0.515*** 0.578*** 0.578*** 0.431*** 0.432*** 

Hard Sawnwood 0.842*** 0.779* 0.788* 0.789* 2.207 2.207 

Soft Sawnwood 0.721*** 0.711** 0.681** 0.680** 0.928 0.925 

Cotton 0.903** 0.833 0.854 0.857 0.550** 0.549** 

Wool, coarse 0.880*** 0.813 0.843 0.845 0.696* 0.697* 

Wool, fine 0.826 0.840 0.902 0.906 0.784 0.785 

Rubber 0.779** 0.788 0.795 0.803 0.521*** 0.522*** 

Hides 0.666* 0.710 0.667 0.667 0.665 0.669 

Cereals   
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Rice 1.032** 0.872* 1.002 1.004 1.634* 1.641* 

Barley 1.188** 0.956 1.094 1.103 1.565 1.565 

Maiz 0.799** 0.785* 0.799 0.802 0.724* 0.723* 

Wheat 0.774*** 0.756* 0.755* 0.756* 0.755* 0.754* 

Meet and seafood   

Beef 0.754** 0.785 0.819 0.819 1.020 1.025 

Lamb 1.089* 1.042** 1.356** 1.357* 1.410* 1.406* 

Swine (pork) 0.700 0.716* 0.708* 0.708* 0.298* 0.301* 

Poultry (chicken) 1.152** 0.934 1.266* 1.266* 6.666* 6.669* 

Fish (salmon) 0.748** 0.800* 0.804 0.805 0.303*** 0.302*** 

Shrimp 1.012 0.971 1.155 1.155 1.154 1.147 
Sugar, bananas and 
orange   
Sugar, European import 
Price 0.723*** 0.761* 0.722** 0.724** 5.770*** 5.771*** 

Sugar, Free Market 0.839** 0.812** 0.841 0.841 1.488 1.488 

Sugar, U.S. import price 0.879 0.873 0.966 0.966 2.601** 2.601** 

Bananas 0.891 0.795** 0.784 0.788 2.526** 2.526** 

Oranges 0.840*** 0.807** 0.814* 0.820* 0.731 0.732 
Notes:  This table reports the ratio of the root mean square error of prediction of the models, to the root 
mean square error of prediction of the random walk model, RMSPEModel/RMSPErandom walk. Values smaller 
than one indicate that the model perform better than the random walk.  We compute the Diebold-Mariano 
(1995) test statistic for the null hypothesis that the corresponding MSE differential is zero.  
*** Indicates statistical significance at the 1% level. 
** Indicates statistical significance at the 5% level. 
* Indicates statistical significance at the 10% level. 
(1) Means the DFM without idiosyncratic component 
(2) Means the DFM with idiosyncratic component 

 

8. Robustness checks 

As a robustness check we estimate all models for a prior period (1992:2-2003:12) and 

compare their forecasting performance, in terms of RMSE ratios, with the second 

period in order to assess whether commodity prices were more or less predictable in 

different subsamples.  Results for the AR model, large-scale factor models as well as 

the small-scale models for the first period are presented in appendix 2.   

The methodology for estimating each model is the same as described in previous 

sections. Regarding the first period, we begin the out-of-sample forecasts in 2000:12, 

therefore, the evaluation period is 2001:1-2003:12. We follow the same procedure 

explained in section 3.3, and use an expanding window with a size of 36 months. We 

compare the predictive content for every model i in both of the periods (pre-2004 and 

post -2004) by means of the following difference: 
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   (3.9) 

 

When there is a value over zero in the above difference, the predictive content of the 

model is enhanced in the second period, given that the RMSE against the random walk 

model is lower in the post-2004 period compared with the pre-2004 period. Results are 

shown in appendix 3. 

In general, small-scale models both with and without idiosyncratic component, 

performed better in the second period. In the post-2004 period, compared to pre-2004, 

the small-scale models with and without specific component improved their prediction 

versus random walk in 27 commodities.  Importantly, the ratio between the RMSE of 

the small-scale DFM to the RMSE of the random walk reduced more for commodities in 

the categories of vegetables and protein meal, agricultural raw materials, and metals. 

These results suggest that the increase in the overall movement of non-energy 

commodity prices since 2004 has caused the small-scale dynamic factor models to 

improve their predictive content, in particularly in the categories above mentioned. 

Regarding the AR model, as well, as the large-scale DFM we found inconclusive 

results since approximately half of commodities´ prediction improved with these models 

and half worsened for the second period. 

In addition to the comparison between periods of each model, we perform an analysis 

of the different models in each period. That is, we compare the forecasting 

performance among models, in terms of their RMSE ratios, in order to assess which 

model has the best behavior in each period. Specifically, we compare the predictive 

capability between models i and j for each period by means of the following ratio: 

 

ቆ
ௗܧܵܯܴ
ௗೕܧܵܯܴ

ቇ
ିଶସ

	, 

          (3.10) 

ቆ
ௗܧܵܯܴ
ௗೕܧܵܯܴ

ቇ
௦௧ିଶସ

 

Values above one mean that the model j outperforms the model prediction of i, since j 

has a RMSE lower than RMSE of the model i, and vice versa. The results can be 

summarized as: 
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a. In both the first and the second periods, the AR model outperforms the large 

scale factor models in its ability to predict changes in the prices of non-energy 

commodities.  The ratios of the RMSE of the large scale models to the RMSE of 

the AR model are lower than one in approximately 33 to 37 commodities. Ratios 

of RMSE of models to AR models are shown in appendix 4. 

b. Results show that the large-scale DFM model without idiosyncratic component 

performs better, in terms of predictability, than the large-scale DFM with 

idiosyncratic component for both periods.  For the first period, for 32 

commodities, the large-scale DFM without idiosyncratic component beats the 

model with this element, while for the second period, it does so for 38 

commodities8. 

c. Regarding the small-scale models, in both periods the model without 

idiosyncratic component reports lower ratios to the small-scale DFM with 

idiosyncratic component. For the first period, for 31 commodities, the small-

scale DFM without idiosyncratic component outperforms, in terms of forecasting 

performance, the small-scale DFM with idiosyncratic component.   For the 

second period, it does so for 25 commodities. 

d. While comparing the AR model with the small-scale DFM, we found interesting 

results.  For the first period, say pre-2004, the ratios of the RMSE of the small-

scale models over the RMSE of the AR model forecast were lower than one  for 

18 commodities (for both models with and without idiosyncratic component). In 

contrast, for the second period, say post-2004, the small-scale models 

increased their predictive content to overcome the AR model in 26 commodities 

for both models with and without idiosyncratic component, see appendix 4. 

e. As in the previous point, we found an increase in the predictability of small-

scale DFM in the second period in comparison to the large-scale DFM.  That is, 

pre-2004, the large-scale model beats the small-scale DFMs in 24 commodities.  

In contrast, for the post-2004 period, the small-scale DFM outperform the large-

scale DFM in 27 to 29 commodities. Therefore it is only the common part what 

is informative for forecasting commodity returns. 

These results reaffirm the increase in the predictive content of the small-scale factor 

models compared with both the autoregressive model and the large-scale DFM for the 

second period. In addition, the results in both forecasting samples highlight that for 

DFM, the inclusion of the idiosyncratic component does not improve the forecasting 

                                                            
8 Estimation results for the rest of the points are available upon request. 
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performance of these models in relation to the naïve random walk model. Therefore, it 

is only the common part what is informative for forecasting commodity returns. 

 

9. Conclusions 

To understand and predict changes in commodity prices it is important not only for 

commodity dependent countries, due to the fact that commodity price swings directly 

affect their term of trade and cycle, but also for commodity importing countries, 

because commodity prices impact inflation and may interfere with monetary policy 

goals. 

We examine the predictability of non-energy commodity price changes when we take 

into account the co-movement of either a large range of commodities, or the co-

movement within a specific category of raw material prices.  We use a dynamic factor 

model approach and estimate the communalities of non-energy commodity price 

inflation either by Principal Components, for the case of large-scale factor, or Kalman 

Filter, in the case of the small-scale (category) factor.   

We found that co-movement in extensive data of commodity prices has poorer 

predictive power over non-energy commodity prices since 2004 when comparing to the 

small-scale factor models and univariate AR model. Conversely, communalities into 

categories such as oils and protein meals, as well as metals seem to substantially 

improve the forecasting performance of the random walk model.  For these categories 

we found reductions in the RMSE up to 50%.  In the robustness checks, we found that 

small-scale DFM has gained predictive power since 2004. In fact, in the previous 

period, say 1992:2-2003:12, the predictability of small and large-scale factor models 

were similar.  Finally, adding the forecast of the idiosyncratic component did not 

improve the results and, therefore, it is only the common part what is valuable for 

forecasting. 

Before 2004 non-energy commodity prices were quite stable, especially for industrial 

inputs such as agricultural raw material and metals, and edibles such as cereals, 

vegetables oils and protein meals.  On the contrary, after 2004, assets allocated to 

commodity indices increased, leading to the so-called financialization in the commodity 

markets. This new feature generates not only greater synchronization among 

commodities (co-movement), but also introduces higher levels of uncertainty to the 

market.  In this paper we have studied the predictive power of co-movement in non-



16 
 

energy commodity prices, further work should include the recent role of uncertainty in 

commodity markets as a possible source of predictability. 
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11. Appendix 

Appendix 1. Non-energy commodity prices 

IMF Category Commodity 

Edibles Cereals Rice Maiz 

    Barley Wheat 

  Meet and seafood Beef Poultry (chicken) 

    Lamb Fish (salmon) 

    Swine (pork) Shrimp 

  Beverages Cocoa beans Coffee, Robusta 

    
Coffee, Other Mild 
Arabicas, Tea 

  Vegetable oils  Soybeans  Sunflower Oil 

  and protein meals Soybean Meal Olive Oil 

    Soybean Oil 
Groundnuts 
(peanuts) 

    Palm oil 
Rapeseed oil, 
crude. 

    Fishmeal   

  Other Edibles Sugar EU. Oranges 

    Sugar US. 

    Bananas   

Industrial Agricultural  
Hard Logs  
Soft Logs Wool, fine 

Inputs raw materials Hard Sawnwood Rubber 

    Soft Sawnwood Hides 

    Cotton Wool, coarse 

  Metals Aluminum Zinc 

    Tin Nickel 

    Uranium Lead 

    Tin   
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Appendix 2. Ratios of the RMSE of the univariate autoregressive (AR) model, large-

scale and small-scale factor models over the RMSE of the random walk model for the 

first period of analysis (1992:2-2013:12). 

RMSPE Model/RMSPE 
random walk. 

(AR) 
model  

Large-Scale 
DFM  
(1) 

Large-Scale 
DFM  
(2) 

Small-Scale 
DFM  
(1) 

Small-Scale 
DFM   
(2) 

Beverages   

Cocoa beans 0.804 0.818 0.818 0.537** 0.537** 

Coffee, Other Mild Arabicas, 0.749*** 0.750** 0.750** 0.662** 0.665** 

Coffee, Robusta 0.766** 0.769** 0.769** 0.565*** 0.564*** 

Tea 0.750* 0.749* 0.749* 0.750* 0.749* 

Vegetable oils and protein meals   

Soybeans 0.854 0.898 0.900 0.984 0.985 

Soybean Meal 0.864 0.904 0.905 0.974 0.977 

Soybean Oil 0.801* 0.820 0.821 0.784 0.784 

Palm oil 0.790** 0.800* 0.802* 0.493*** 0.490*** 

Fishmeal 0.810* 0.839 0.839 1.789** 1.791** 

 Sunflower Oil 0.798** 0.822* 0.823* 0.610** 0.608** 

Olive Oil 0.875 0.930 0.931 1.920*** 1.918*** 

Groundnuts (peanuts) 0.915 1.049 1.049 1.773** 1.772** 

Rapeseed oil, crude. 0.790* 0.782* 0.785* 0.770* 0.769* 

Metals   

Aluminum 0.741*** 0.745** 0.745** 0.821 0.821 

Copper 0.837* 0.890 0.891 0.887 0.887 

Tin 0.865 0.894 0.894 0.629* 0.629* 

Zinc 0.742*** 0.732*** 0.733*** 0.704** 0.704** 

Nickel 0.853 0.918 0.919 0.458*** 0.459*** 

Lead 0.752*** 0.743** 0.744** 0.539*** 0.536*** 

Uranium 0.878 0.928 0.928 0.936 0.930 

Agricultural raw materials   

Hard Logs 0.914 1.090 1.090 1.906 1.909 

Soft Logs 0.476*** 0.567*** 0.566*** 0.590 0.586 

Hard Sawnwood 0.783* 0.802 0.802 2.157 2.159 

Soft Sawnwood 0.494** 0.572** 0.572** 0.378 0.379 

Cotton 0.893 1.072 1.074 1.026 1.030 

Wool, coarse 0.887 0.929 0.929 0.868 0.868 

Wool, fine 0.831 0.858 0.859 0.664 0.665 

Rubber 0.811 0.833 0.833 0.720 0.720 

Hides 0.925 1.038 1.038 1.039 1.032 

Cereals   

Rice 0.787* 0.806 0.806 1.515* 1.518* 

Barley 0.884 1.029 1.032 1.252 1.253 

Maiz 0.808* 0.838 0.842 1.226 1.227 
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Wheat 0.818 0.844 0.845 0.839 0.838 

Meet and seafood   

Beef 0.851 0.900 0.900 0.823 0.825 

Lamb 0.744*** 0.703** 0.703** 0.763 0.764 

Swine (pork) 0.752* 0.756 0.756 0.356*** 0.357*** 

Poultry (chicken) 0.903 1.123 1.124 4.347*** 4.350*** 

Fish (salmon) 0.826* 0.870 0.870 0.647 0.650 

Shrimp 0.830 0.861 0.862 0.863 0.863 

Sugar, bananas and orange   

Sugar, European import price 0.788* 0.810 0.810 1.380*** 1.382*** 

Sugar, Free Market 0.730** 0.695** 0.695** 1.370* 1.373* 

Sugar, U.S. import price 0.875 0.956 0.956 1.894*** 1.895*** 

Bananas 0.699** 0.694** 0.695** 0.613** 0.619** 

Oranges 0.790** 0.800* 0.802* 0.835 0.825 

Notes:  This table reports the ratio of the root mean square error of prediction of the models, to the root 
mean square error of prediction of the random walk model, RMSPEModel/RMSPErandom walk. Values smaller 
than one indicate that the model perform better than the random walk.  We compute the Diebold-Mariano 
(1995) test statistic for the null hypothesis that the corresponding MSE differential is zero.  
*** Indicates statistical significance at the 1% level. 
** Indicates statistical significance at the 5% level. 
* Indicates statistical significance at the 10% level. 
(1) Means the DFM without idiosyncratic component 
(2) Means the DFM with idiosyncratic component 
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Appendix 3. Differences of the RMSPE between both periods (pre-2004 and post-

2004) 

(RMSPE i/RMSPE rw)pre-2004  
-   (RMSPE i/RMSPE rw)post-

2004 

(AR) 
model  

Large-
Scale 
DFM (1) 

Large-
Scale 
DFM (2) 

Small-
Scale 
DFM (1) 

Small-
Scale 
DFM  (2) 

Cereals   

Rice -0.085 -0.197 -0.199 -0.118 -0.123 
Barley -0.072 -0.065 -0.071 -0.312 -0.311 
Maiz 0.023 0.039 0.040 0.503 0.503 
Wheat 0.064 0.089 0.089 0.083 0.083 
Meet and seafood   
Beef 0.066 0.081 0.081 -0.197 -0.200 
Lamb -0.298 -0.653 -0.654 -0.648 -0.642 
Swine (pork) 0.036 0.048 0.048 0.058 0.056 
Poultry (chicken) -0.031 -0.143 -0.143 -2.319 -2.318 
Fish (salmon) 0.026 0.067 0.065 0.343 0.348 
Shrimp -0.141 -0.294 -0.294 -0.292 -0.285 
Beverages   
Cocoa beans -0.021 -0.038 -0.040 -0.136 -0.136 
Coffee, Other Mild Arabicas, -0.071 -0.082 -0.085 0.031 0.034 
Coffee, Robusta -0.022 -0.018 -0.023 -0.181 -0.184 
Tea -0.141 -0.178 -0.179 -0.178 -0.177 
Vegetable oils and protein 
meals      
Soybeans 0.043 0.052 0.050 0.423 0.422 
Soybean Meal 0.055 0.067 0.067 0.537 0.537 
Soybean Oil 0.001 -0.013 -0.022 0.060 0.059 
Palm oil -0.017 -0.014 -0.018 0.028 0.027 
Fishmeal -0.032 -0.060 -0.060 1.270 1.274 
Sunflower Oil -0.008 0.010 0.005 0.000 0.001 
Olive Oil 0.078 0.135 0.134 1.440 1.436 
Groundnuts (peanuts) 0.133 0.369 0.369 1.435 1.431 
Rapeseed oil, crude. 0.028 -0.005 -0.010 -0.022 -0.022 
Sugar, bananas and orange   
Sugar, European import price 0.027 0.087 0.086 1.610 1.611 
Sugar, Free Market -0.082 -0.146 -0.146 -0.117 -0.115 
Sugar, U.S. import price 0.002 -0.010 -0.011 8.292 8.294 
Bananas -0.096 -0.090 -0.093 -1.913 -1.906 
Oranges -0.017 -0.014 -0.018 0.102 0.093 
Agricultural raw materials   
Hard Logs -0.018 0.044 0.044 0.436 0.439 
Soft Logs -0.039 -0.011 -0.012 0.159 0.154 
Hard Sawnwood 0.004 0.014 0.013 -0.050 -0.047 
Soft Sawnwood -0.217 -0.108 -0.108 -0.550 -0.546 
Cotton 0.060 0.218 0.217 0.475 0.481 
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Wool, coarse 0.074 0.086 0.084 0.171 0.171 
Wool, fine -0.008 -0.044 -0.047 -0.120 -0.120 
Rubber 0.024 0.038 0.030 0.198 0.197 
Hides 0.215 0.373 0.371 0.373 0.364 
Metals   
Aluminum -0.020 0.009 0.005 0.180 0.180 
Copper 0.017 0.035 0.026 0.138 0.136 
Tin 0.078 0.099 0.094 0.172 0.172 
Zinc -0.010 0.035 0.034 0.177 0.174 
Nickel 0.064 0.113 0.101 -0.055 -0.054 
Lead 0.003 0.011 0.007 0.030 0.023 
Uranium -0.021 -0.153 -0.158 -0.146 -0.137 
Notes:  This table reports the difference of the RMSPE of the models to the RMSPE of the 
random walk model for the first period (pre-2004), minus the RMSPE ratio for the second period 
(post-2004). Values over zero, mark in bold in table, indicate that the predictive content of the 
model is enhance in the second period.  
(1) Means the DFM without idiosyncratic component 
(2) Means the DFM with idiosyncratic component 

 

 

 

 

 

 

 

 



23 
 

Appendix 4.  Ratios of the RMSE of the large-scale and small-scale factor models over 
the RMSE of the AR model. 

 

RMSPE Model/RMSPE 
AR. 

Large-Scale 
DFM (1) 

Large-Scale 
DFM (2) 

Small-Scale 
DFM (1) 

Small-Scale 
DFM  (2) 

pre-
2004 

post-
2004 

pre-
2004 

post-
2004 

pre-
2004 

post-
2004 

pre-
2004 

post-
2004 

Cereals                 

Rice 1.023 1.149 1.152 1.024 1.929 1.874 1.932 1.882 

Barley 1.164 1.144 1.154 1.168 1.457 1.637 1.458 1.637 

Maiz 1.036 1.017 1.021 1.041 1.507 0.921 1.508 0.921 

Wheat 1.032 1.001 1.002 1.033 1.034 1.001 1.034 1.000 

Meet and seafood                 

Beef 1.058 1.044 1.044 1.058 1.064 1.300 1.068 1.306 

Lamb 0.946 1.301 1.302 0.945 1.032 1.353 1.034 1.350 

Swine (pork) 1.004 0.990 0.990 1.004 0.454 0.417 0.455 0.421 

Poultry (chicken) 1.244 1.357 1.357 1.245 4.908 7.140 4.912 7.143 

Fish (salmon) 1.053 1.004 1.006 1.053 0.804 0.379 0.807 0.378 

Shrimp 1.038 1.190 1.190 1.038 1.040 1.189 1.040 1.181 

Beverages                 

Cocoa beans 1.018 1.039 1.040 1.018 0.673 0.818 0.673 0.818 

Coffee, Other Mild Arabicas, 1.002 1.015 1.019 1.002 0.886 0.769 0.891 0.770 

Coffee, Robusta 1.004 0.999 1.006 1.003 0.745 0.947 0.743 0.950 

Tea 0.999 1.041 1.042 0.999 1.002 1.041 1.001 1.039 
Vegetable oils and protein 
meals                 

Soybeans 1.052 1.044 1.049 1.054 1.152 0.693 1.154 0.695 

Soybean Meal 1.046 1.035 1.037 1.048 1.162 0.541 1.166 0.545 

Soybean Oil 1.023 1.041 1.053 1.025 0.986 0.905 0.985 0.905 

Palm oil 1.013 1.009 1.016 1.016 0.622 0.577 0.619 0.575 

Fishmeal 1.035 1.067 1.067 1.036 1.975 0.617 1.977 0.614 

 Sunflower Oil 1.031 1.007 1.015 1.032 0.756 0.756 0.753 0.753 

Olive Oil 1.063 0.999 1.000 1.064 2.175 0.603 2.173 0.606 

Groundnuts (peanuts) 1.147 0.870 0.870 1.147 1.922 0.433 1.920 0.436 

Rapeseed oil, crude. 0.989 1.033 1.043 0.994 0.971 1.040 0.970 1.038 

Sugar, bananas and orange                 

Sugar, European import price 1.026 0.950 0.951 1.027 9.065 7.577 9.067 7.578 

Sugar, Free Market 0.952 1.036 1.035 0.952 1.850 1.830 1.854 1.831 

Sugar, U.S. import price 1.092 1.106 1.107 1.092 11.981 2.980 11.983 2.980 

Bananas 0.992 0.986 0.991 0.994 0.903 3.176 0.913 3.175 

Oranges 1.013 1.009 1.016 1.016 1.653 2.218 1.634 2.218 

Agricultural raw materials                 

Hard Logs 1.192 1.122 1.122 1.192 2.046 1.578 2.049 1.578 

Soft Logs 1.192 1.124 1.123 1.191 1.210 0.838 1.201 0.839 

Hard Sawnwood 1.023 1.011 1.013 1.023 2.740 2.830 2.743 2.829 

Soft Sawnwood 1.157 0.956 0.956 1.157 0.702 1.304 0.703 1.299 

Cotton 1.201 1.025 1.029 1.202 1.209 0.661 1.215 0.659 
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Wool, coarse 1.046 1.037 1.039 1.046 0.939 0.857 0.939 0.858 

Wool, fine 1.032 1.074 1.079 1.033 0.793 0.934 0.795 0.935 

Rubber 1.027 1.009 1.020 1.027 0.886 0.662 0.886 0.664 

Hides 1.123 0.938 0.940 1.123 1.121 0.938 1.114 0.942 

Metals                 

Aluminum 1.006 0.968 0.973 1.006 1.099 0.841 1.099 0.842 

Copper 1.064 1.043 1.055 1.065 0.992 0.913 0.993 0.915 

Tin 1.034 1.010 1.017 1.034 0.764 0.581 0.764 0.581 

Zinc 0.987 0.927 0.930 0.988 0.958 0.701 0.958 0.706 

Nickel 1.077 1.022 1.037 1.078 0.544 0.651 0.545 0.651 

Lead 0.988 0.977 0.984 0.989 0.719 0.679 0.715 0.686 

Uranium 1.057 1.203 1.208 1.057 1.080 1.205 1.073 1.187 
Notes:  This table reports the ratio of the root mean square error of prediction of the models, to the root 
mean square error of prediction of the AR model, RMSPEModel/RMSPErAR. Values smaller than one 
indicate that the model perform better than the AR.   
(1) Means the DFM without idiosyncratic component 
(2) Means the DFM with idiosyncratic component 
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